ネコでも分かる特殊相対論

0.蛇足

相対性理論の名前は聞いたことがない人がいないくらいに広く浸透していて、ニュートンの万有引力と並んでも最も有名な物理学理論の一つと言ってもよろしいんじゃないでしょうか。万有引力は「ものはなんでも引っ張り合う」ということもまた良く知られていますが、相対論の中身はそれほど知られてないと思います。

「双子のパラドックス」というものを聞いたことがある人もいれば聞いたこともない人もいるでしょう。相対論の世界では、日常の感覚とは異なったことがイロイロと起こり、一見矛盾して聞こえる話がたくさんあります。そういったパラドックスを紹介しながら、相対論てなんやねんという質問に答えられるようになったらなあと思ってこの文章を書いていきます。企画自体はとある人の要望によるものです(笑)

0.5.蛇足の爪くらい

 実際に特殊相対論で使う数学は難しいものではないですが、数式ナシでも直感的には理解可能です。具体的な数字を扱おうと思うなら計算は避けられませんが、中学で習う三平方の定理(ピタゴラスの定理)があれば多分十分です。右に絵を書いときます。三角形は直角三角形でないといけません。

0.0.5.蛇足の爪の垢くらい

 相対性理論と言いますが「相対性」の意味について触れておきます。例えば踏み切りで電車が通過しているの見ているという状況を考えると、踏み切り待ちしている人から見れば電車が走ってるわけですが、電車に乗ってる人から見れば、踏み切り待ちしている人が電車前方から後方へと通り過ぎていくように見えます。もちろん電車に乗ってる人にとって電車自体は静止して見えます。まあガタゴト揺れたりするだろうけど。

 このように、同じ現象を見ていても「見る人によってその見え方は違う」ということがわかります。これを運動の相対性というわけですが。ただ一ついえることは、見え方は違っても誰の目から見ても「踏み切りで電車と人が出会った」という事実は変わりません

1.双子のパラドックスとは?

 いきなり相対論の解説に入ってもいいんですが、つまんないのでまずは予告編みたいな感じで。蛇足でも触れた双子のパラドックスを紹介します。文中の数字はなんでもいいです。

  (1)地球である双子の姉妹が生まれました。
  (2)姉は生まれてすぐなんでか知らんがどえらいスピードのロケットに乗って地球を飛び立ちました。
  (3)宇宙を旅する姉も12歳になりました。そろそろ地球に帰らないと婿探しができないと思い、同じ速度で地球に向かって帰還を始めました。
  (4)姉が地球へ帰ったときは24歳になってお年頃なわけですが、妹はなんと40歳になっていました。
  (5)わあ不思議

 と言った流れです。これだけでも十分不思議なんですが、100歩譲ってこれを認めたとしましょ。たしかに地球にいる妹から見れば姉が飛んでいって帰ってきたように見えますが、姉から見れば地球に乗った妹が飛んでいって帰ってきたように見えます。(右図)さっきは飛んでいった姉の方が若いという結果から類推したとき、姉から見れば飛んでいった妹の方が若くなっていることにはなり、”爪の垢”で触れた「事実は一つ」に反します。このあたりがパラドックスと呼ばれる所以です。

まあ種明かしはおいおい。このような年齢差が生じるのは実験で観測されていて事実です。人体実験したわけじゃないけど。

2.相対論の本体

ではぼちぼち本題に。

 時速120kmで走ってるトラックの上から、阪神星野が時速80kmのスローカーブをトラックの進行方向に投げたとすると、バッターから見ればスローカーブが時速200kmの超剛速変化球になります。およそ。光の速度は秒速30万km=時速100億kmですが、トラックのヘッドライトから出る光は道に立ってる人から見れば時速100億120kmかといえばそうじゃない、というのが相対論の主張するところです。

相対論の出発点というか一番の根っこにある考え、すなわち基本原理は

光の速さは誰がどのように見ても変わらない

という、「光速度不変の原理」です。このことを仮定して相対論は構成されていて、さまざまな理論が派生していきます。いきなりそんなこと言われましてもって感じですが、アインシュタインがこの仮定を思いつくには歴史的な経緯がありまして。要望があれば触れますがここでは省略。

 トラックから出た光でもロケットが出した光でも、UFOが出した光でも、その速度はやっぱり秒速30万kmと言うただ一つのこの仮定が、相対論の正体です。

3.だからどうした

じゃあ光速度不変の原理を導入することによって何がどうなるのかといいますと。
右のような箱の中に人がいて、その両側の壁に鏡が貼ってあります。んで鏡の間で光がペケペケと反射を繰り返して往復しているような状況を考えます。

光の速度は誰から見ても同じという原理の元では、言い換えれば光の速度が「一番信頼できるもの」であるので、この人は光がこの箱の中を往復するのにかかった時間を”1たっく秒”と決めることにしました。

計算のアプローチもしておくと、
 光速:c
 箱の長さ:l
 片道にかかる時間:Δt
とすると右のように書ける。





さて、次に。この箱が実は透明で、箱の外にもこの様子を見ている人がいたとします。そんでもってこの箱が、外で見てる人から見たら横に動いていたとします。

 すると箱の中の人にとって光の見え方は上の例と同じですが、外から見ている人にとっては、光はナナメに進んでいるように見えます。(上図の赤いライン)

箱の中の人が見てる分には、光は箱の中を単に1往復しただけなので”1たっく秒”時間が経ったと感じるわけですが、箱の外から見てる人からは、光の走った道のりは箱の往復よりも長い距離走って見えます。
光の走る速さはどちらから見ても同じという仮定の下なので、赤いラインを光が走るためには”1たっく秒”よりも多くの時間を要するはずです。

計算のアプローチも左のとおり。三平方の定理から、外の人から見て、片道に要する時間Δt'はこの式で与えられ、Δtよりも大きい。箱の速度をvとした。

4.各自時計は持つように

上で書いたことはどういうことを意味しているのか。箱の中の人が”1たっく秒”の時間を過ごしている間に、外にいる人は"1.5たっく秒”とか"2たっく秒”の時間が過ぎているようことになります。このことから分かることは、

動いている人は止まっている人から見ると、時間が経つのが遅く見える。

ということが言えます。言い換えれば、時計の進む早さは各人一人一人で異なり、それぞれが固有の時間を持っていると言う事ができます。もうこうなったら他人の時計は当てになりません。時計台の時刻も怪しいもんです。信頼できる自分の時計を持ち歩きましょう(笑)

時間の進みの違いを定量的に表すと次のようになる。

このことから、双子のパラドックスで姉妹に年齢差が生じることは説明できそうです。以下次回。

1ページ 前のページ 上の階層 次のページ 最後のページ